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Modelling superplastic deformation of materials 
with a nonequiaxed microstructure 
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The superplastic deformation behaviour of a two-dimensional nonequiaxed microstructure 
is investigated on the basis of the grain-rolling mechanism proposed by Paidar and Takeuchi 
for an equiaxed microstructure. Analysis shows that not only the deformation geometry but 
also the dynamics of grain boundary dislocation activity will be altered if grains are 
elongated rather than equiaxed. Constitutive equations thus derived indicate that the grain 
aspect ratio can impose a remarkable influence on the superplastic stress-strain rate 
relationship and such an influence can be quite different if the orientation of the applied 
stress lies over an angle with respect to the longer axis of the grains. The complexity of 
modelling the superplastic deformation of engineering materials is also discussed. 

1. Introduction 
It is well established that the microstructure of 
a superplastic material should fulfil certain prerequi- 
sites-fine-grained, equiaxed, and stable throughout 
the deformation processes [1-3]. In most cases, 
achievement of such a microstructure needs the imple- 
mentation of special manufacturing technology [43. 
On the other hand, the possibility of superplastic 
forming of commercial materials with microstructure 
that does not fully meet the above-mentioned require- 
ments also attracts both scientific and technological 
interest because of its economic significance [5-93. 

One of the major deviations of commercial material 
microstructure from the traditional "ideal" one is its 
elongated grain shape which may be a remainder 
of insufficient equiaxialization processes [4]. 
Elongated grains are often arranged along certain 
spatial directions (e.g. the rolling direction) due to the 
directional nature of the deformation in the material 
manufacturing process. When such material is sup- 
plied for superplastic forming, anisotropic behaviour 
occurs [8, 93. 

A number of sophisticated theoretical models have 
been developed to rationalize the phenomenon of 
superplasticity [10-183. However, although efforts 
have been made to extend them into nonequiaxially 
grained microstructures, the existing developments 
can only deal with the case where the longer axis of 
the grains is parallel to the applied tensile stress 
[19, 203 . One of the reasons could be that in previous 
models, the basic deformation mechanism--grain 
boundary sliding (GBS)--and the accommodation 
processes--diffusion or dislocation creep--were not, 
or could not be, tightly related to certain grain bound- 
ary-stress orientation relationships, which are intrin- 
sically required for the characterization of the defor- 
mation behaviours of nonequiaxed microstructures 
[10-18]. 
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Recently, a model based on grain rolling was pro- 
posed by Paidar and Takeuchi [21]. Like most of the 
former models, the P-T model deals with a micro- 
structure of closely packed hexagonal grains. Grain 
boundaries were divided into compressive, tensile and 
sliding facets according to their orientation relation- 
ship with the applied stress. Deformation is carried 
out by shearing of grain layers resulting from the 
motion of grain boundary dislocations (GBDs) which 
glide on sliding facets, while accommodation is 
achieved by climbing of GBDs on the facets with 
normal stress. Since the orientation dependence of 
grain boundary behaviours was closely watched in 
this model, it is quite convenient to extend it into the 
condition of nonequiaxed microstructures and to in- 
vestigate the complex anisotropic deformation behav- 
iours that widely exist in the superplastic forming of 
engineering materials. 

2. Model 
2.1. Physical basis of the model 
The main features of the strain-rate controlling mech- 
anism can be summarized as follows from Paidar and 
Takeuchi's work: 

(1) On the sliding facets, where the shear component 
of the applied stress plays a major role, gliding 
GBDs pile up at the grain boundary triple junc- 
tions. Each GBD with Burger's vector bs disso- 

ciates into two sessile dislocations [bcxf3/2, bc/2] 
and [b~xf3/2, -.bc/2] which enter the other two 

boundaries. Here be = bs/~. 
(2) A pile-up of gliding GBDs can be regarded as 

a macrodislocation which has a repulsive interac- 
tion with the GBDs climbing along the "tensile or 
compressive boundaries. The force acting on a 
climbing GBD by the macrodislocation is smaller 
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by a factor (1 - 2v)/6 than that acting on a GBD 
moving along the sliding boundary. 

(3) The climbing GBDs form a pile-up to compensate 
for the repulsive force from the sliding GBDs. 
The length of this pile-up is half of the grain 
boundary length. Repulsive interaction force be- 
tween the climbing GBDs is (1 - 2v)/9 times that 
between the sliding GBDs. 

(4) The velocity of the climbing GBDs toward their 
annihilating point (half-length point of the grain 
boundaries) determines the emission rate of the 
climbing GBDs, or the angular velocity of grain- 
rolling; thus it is the rate-controlling factor. 

(5) The force acting for GBD motion, and conse- 
quently the dislocation velocity on compressive 
boundaries, is smaller than that on the tensile 
boundaries (see later Equations 8 and 9); GBDs 
climbing on these boundaries tend to be rate- 
controlling. 

The GBD interactions described above are depicted 
schematically in Fig. 1. The resulting superplastic de- 
formation constitutive equation of hexagonal grains is 
E21]: 

g = 2(1 - v) (2 + 3,,f6 - 4 v) 

x sin a2 ~SDgf~2/3 gb~kTd 2 (1) 

where v is Poisson's ratio, 8 is the grain boundary 
thickness, Dg is the grain boundary diffusion coeffi- 
cient, f~ is the atomic volume, 11 is the shear modulus; 
d is the grain diameter, ~, k and T have their usual 
meanings and a is the angle between the normal direc- 
tion of sliding facets and the applied tensile stress. 

The variation in grain diameter, or grain boundary 
length means a change not only in the climbing dis- 
tance of sessile GBDs on facets with normal stress, but 
also the GBD pile-up length on the sliding facets and 
thus the stress generated by it at grain boundary triple 
junctions. Both of these factors are critical in the 
above-described deformation controlling mechanism. 
So it can be expected that, in the case ofa nonequiaxed 
and directionally arrayed microstructure in which the 
grain boundary length is different in different di- 
rections, the strain-rate response to applied stress 
will be both orientation- and grain-aspect-ratio- 
dependent. 

2.2. Deformation geometry: correlation 
of macroscopic strain rate with GBD 
emission rate 
For simplicity, the nonequiaxed microstructure is 
idealized into closely packed shuttle-shaped grains as 
depicted in Fig. 2. Grain boundaries are 120 ~ from 
each other at triple junctions, and the lengths of the 
longer and shorter boundaries are de~2 and ds/2, re- 
spectively. We can define p = dL/ds as the grain aspect 
ratio that represents the extent of nonequiaxity, and 
the angle between the normal direction of the longer 
facets and the applied tension stress direction is 0. 

For the three adjacent boundaries OA, OB and OC 
in Fig. 2, the resolved shear stress coefficient (RSSC) 
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Figure 1 GBD pile-ups at triple junction. 

Figure 2 Model microstructure. 

relationship with O is shown in Fig. 3. The boundary 
with the highest RSSC, and consequently the resolved 
shear stress dominates its GBD movement, is expected 
to slide, while accommodation is carried out by the 
other two. The nature of the normal stress (tensile or 
compressive) acting upon the two sessile boundaries 
depends upon their relative position to the applied 
tensile stress (ATS); the one that lies closer to the ATS 
is expected to be of compressive nature and the other 
tensile. 

We can conclude from the above that grain bound- 
ary behaviours fall into three categories with respect 
to the grain boundary-stress orientation relationship: 

(1) 0 = 0-30~ in the three adjacent boundaries 
(a longer one and two shorter ones), one of the 
shorter ones slides, the other is compressive, the 
longer boundary is tensile. 

(2) 0 = 30-60~ the longer one slides, the shorter ones 
are either tensile or compressive. 

(3) (~ = 60-90~ one of the shorter ones slides, the 
other is tensile, and the longer one is compressive. 

We shall show later that these three conditions 
correspond to different deformationconst i tut ive 
equations. 
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Figure 4 Shearing carried out by GBS. (a) Longer boundary sliding, 
(b) shorter boundary sliding, 

The macroscopic strain carried out by grain bound- 
ary sliding can be correlated with the emission rate of 
GBDs using the simple geometry as shown in Fig. 4. 
When N dislocations with Burgers vector b~ glide out 
of the sliding facet, the slip distance of the grain 
boundary is Nbs; thus the shear strains when the 
longer and shorter boundary slides are 

7 = 2 Nb~/~/3ds (2) 
and 

y = 4Nbs /x /3  (p + 1)ds (3) 

respectively. 
A sliding GBD dissociates into two sessile GBDs at 

the triple point; each of these two sessile GBDs enters 
one of the adjacent boundaries with normal stress, so 
the emission rate of climbing GBDs nc is equal to that 
of the sliding GBDs n~. Thus the shear strain rate will 
be 

= 2 n~b~/~/3ds (4) 
and 

? = 4 n o b ~ / ~  (O + 1)ds (5) 

The uniaxial tensile strain rate is related to the shear 
strain rate by 

k = ~ sin ~ cos ~ (6) 

where ~ is the angle between the normal direction of 
the sliding boundary and the tensile axis. 

From Equations 4, 5 and 6 the relationship between 
macroscopic tensile strain rate and climbing GBD 
emission rate can be constructed. 

2.3. GBD emission rate 
When an uniaxial tensile stress cy is applied, the mag- 
nitude of forces acting on the GBDs arising from it are 
[211 

f~ = (y bs sin a cos ~ (7) 

f = (~bs [sin clcos ~ + (sin 2 ~ - 1/6)]/2 (8) 

fd = c~bs [sin ~cos ~ -  (sin 2 ~ -  1/6)]/2 (9) 

respectively, for the sliding, tensile and compressive 
facets. 

The number of dislocations in a gliding pile-up can 
be stated as 

Ns = (1 - v)(dr~2 b~)(L/~b~) 

= f~/Zrcf~s (L = dr~2) (10) 

where f~ = g b j 2 r c ( 1 -  v) L, L is the average separ- 
ation of GBDs in the pile-up and dl is twice the 
boundary length. 

We can see that fr~ is equal to the repulsive force 
between two edge dislocations with a separation of L. 

Similarly, for a nonsliding boundary with a length 
of d2/2, where the GBD pile-up length is d2/4, the 
number of GBDs in this pile-up to compensate the 
sliding macro-dislocation is 

No = fb/2r@c (L = d2/2) (11) 

where fro =frs(1 -- 2V)/9 = (1 -- 2v)gbj18~(1 - v)L 
is the repulsive force between the climbing GBDs,fb is 
the counteracting force of a climbing GBD to the 
sliding macrodislocation. The acting and counteract- 
ing force compensate with the equation 

(1 - 2 v) N~f~/6 = Ncfb (12) 

From Equations 10-12 we can derive 

fb = (1 -- 2 v) (dt/da)l/Zf~/3 x /6  (13) 

The climbing velocity of GBDs is [21] 

vc = 2 6DgY~f~/b 2 K T  ( R -  be) (14) 

wherefc is a combination of the effect of applied stress 
and fb, and R = d2/4 is the pile-up length. 

The direct forces acting on climbing GBDs by the 
applied stress is expressed by Equations 8 and 9 for 
tensile and compressive facets, respectively. We can 
see from these two equations that for ~ = 30-60~ is 
always larger thanfa; thus the GBD climbing velocity 
is smaller on compressive facets, which controls the 
GBD emission rate at the triple point. Taking into 
account the fact that vacancy production is quicker on 
tensile facets, which accelerates the GBD annihilation 
process, (ft +fd) /2  can be regarded as the applied 
stress effect term in fc, so 

f~ =fb  +f~/2 (15) 

The separation of climbing GBDs, Lc = d2/4Nc, 
combined with the GBD climbing velocity vc, pro- 
vides a characterization of the GBD emission rate 
through 

no = vo/Lo (16) 

3869 



TABLE I Nonequiaxity effect on GBD activities 

Category I II III 

Geometric features 0 0 ~ 30 ~ 30 ~ 60 ~ 60 ~ 90 ~ 
dl ds dL ds 
d2 ds ds dL 

~ no Equation 5 Equation 4 Equation 5 

Parameters related to fb fbo Pl/2fbo 13-1/2fbo 
GBD activities f~ fbo +f~/2 fbo + Pl/Zf~/2 fbo + P-1/zf~/2 

N~ N~o pN, o N~o 
N~ N~o pl/2N~o pl/2Neo 
L-~ L~--~ pV 1/2~co [01/2~ e 
V: a(fbo +L/Z) A(fbo + pl/%/2) A(f~o + 0-1/%/2) 

The above equations will lead to the final determin- 
ation of the deformation strain-rate i. 

2.4. Constitutive equations 
Microstructure nonequiaxity results in anisotropy of a 
series of critical parameters, as summarized in Table I, 
for the three categories derived in Section 2.2. 

fbo =f~(1 -- 2 V)/3Xf6, 

Nso = (1 - v) f~ds/2 ~tb 2 

N~o = x/6 Nso/2, 

Lco= gb2s/x/6 (1 - v)f ,  

correspond to the fb, Ns, No and Lr values for an 
equiaxed microstructure with grain diameter ds, and 
A = 24~Dgf~/b2kTds . 

From Table I, the nonequiaxity effect on GBD ac- 
tivities can be clearly understood. When the longer 
axis of grains lies approximately perpendicular to ten- 
sile stress (0 = 0-30 ~ which is the case for category I, 
GBD activities account for both grain boundary sli- 
ding and its correspondent controlling process taking 
place on shorter boundaries, GBD separation and 
climbing velocity, and consequently the GBD emis- 
sion rate, show no difference from an equiaxed micro- 
structure with grain size ds. This tells us that any grain 
shape influence on the constitutive equations results 
from the deformation geometry shown in Fig. 4 and 
Equation 5. 

As for category II (0 = 30-60~ the longer bound- 
ary is activated for sliding and the longer length of the 
sliding pile-up results in a higher acting force for 
sessile GBD climbing. Sessile GBD separation is de- 
creased and the climbing velocity increased. This 
causes a higher GBD emission rate and hence a higher 
strain rate for a given stress. 

In the case of category III (0 = 60-90~ the longer 
climbing GBD pile-up and the larger number of 
GBDs in it result in a higher separation of GBDs and 
a lower climbing velocity. These, combined with the 
deformation geometry effect (Equation 5), reduce the 
superplastic strain rate at constant stress or give 
a higher flow stress at a given strain rate. 
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According to Equations 4-6, 16 and Table I, the 
constitutive equations for the three categories are as 
follows: 

Category I 

= 

28Dgf~[3w/6 + 2 - 4 v] (1 - v)cr 2 sin 32(0 q- 30 ~ 

, f3(O + 1)gb~kTd 2 
(17) 

Category II 

8Dgf~ [3 ,~  o r / a+  9 ( 2 _ 4 v ) ]  ( 1 -  v)cy2 sin 320 

x/3gb~kTd~ 

(18) 

Category III 

= 

28Dgf2 [3x/6 p 1/2 _~_ 2 - 4 v] (1 - v) (yz sin 32 (0 - 30 ~ 

x /3p2(p+ l) gbskTd~ 

(19) 

It should be pointed out that the above derivation 
is based on the concept that the GBD emission rate 
on compressive boundaries determines the deforma- 
tion rate; this is true in both categories II and III. 
But for category I, we know from Table I that an 
elongated sessile boundary slows down GBD emis- 
sion; if such an effect dominates, GBD climbing on the 
longer tensile facet, rather than on the shorter com- 
pressive facet, will control the whole deformation pro- 
cess. Taking the actual value o f f  and fa (Equations 
8 and 9) into account in the calculation offc for both 
tensile and compressive boundaries, and using the 
criterion of 

tT, ct/le/c d 3/2 = P f~t/fcd (20) 

we can get a critical value of P = po(0). 
If p < po(0), nct/ndt > ], GBD climbing on the shor- 

ter compressive boundary controls, and the constitu- 
tive equation is Equation 17. 



If p > po(0), deformation is controlled by GBD ac- dicted by the Paidar and Takeuchi model for equiaxed 
tivity on the longer tensile boundary, and the strain- closely packed hexagonal grains; this is due to the 
rate will be periodical anisotropic nature of the model microstruc- 

= 2/SDga [pl/2 (3~/6sin 20 + 6,,/2sin20 -- ,,/2) + sin20(2 -- 4v)] (1 - v) cy2 sin22(0 + 30 ~ 
(21) 

~,f~ p2(p + 1)btbskTd 2 

The strain-rate dependence on aspect ratio will be 
stronger in this case than where Equation 17 domin- 
ates. 

3 .  D i s c u s s i o n  

In dealing with superplastic deformation behaviour of 
nonequiaxially grained materials, the most significant 
problem is, in what manner and to what extent grain 
shape, represented quantitatively by grain aspect ra- 
tio, affects the flow stress-strain rate relationship; this 
is of great importance in determining optimum super- 
plastic forming conditions. The general description of 
strain-rate response to stress is often stated as 

= &({s, ~7, T) 

Here S includes all the microstructure factors, for 
example mean values and distribution functions of 
grain size, grain aspect ratio, grain orientation, etc., 
and in dual or multi-phase materials the morphology 
of all the constitutive phases. As for a homogeneous 
nonequiaxed microstructure, a simplified expression 
in the form of 

= ~o(~, d, T) gl(P) g2(0) 

is expected. Experiments devoted to determining 
gt oc p x often show a negative value of x, which means 
P > 1 decreases the strain-rate or increases flow stress. 
This is how the concept "elongated grains slow down 
superplastic deformation" takes its form. From the 
deductions in this paper, we can conclude that when 
the longer axis,of the grains lies parallel or perpen- 
dicular to the applied stress, this is actually the case. 

However, when the longer axis of grains lies in an 
angle range around 45 ~ with respect to the applied 
stress, x is positive as shown by Equation 18; this 
indicates that superplastic deformation can be carried 
out at higher strain rates, or lower stresses in this case, 
compared to an equiaxed microstructure. Fig. 5 
shows the superplastic strain-rate dependence on 
grain aspect ratio O in different angle ranges. 

Experimental investigations on the anisotropic 
stress-strain rate behaviour of nonequiaxially grained 
Ti6A14V with banded 0~ and [3 phases, at 0 ~ 45 ~ and 
90 ~ to the applied stress, showed qualitative agree- 
ment with the present model [22]. The peak m-value 
was observed at a strain-rate as high as 
(8-10)x 10-4s -~ for a 45 ~ sample, which is several 
times higher than equiaxed Ti6A14V usually shows 
[23]. An alternative mechanism based on the differ- 
ence in GBD accommodation velocity in c~ and 13 
phases was described in Reference 22. 

The superplastic strain-rate dependence upon ori- 
entation is depicted in Fig. 6, which is calculated from 
Equations 17-19 when v = 0.3 for both equiaxed and 
nonequiaxed microstructures. A period of 30 ~ is pre- 

ture. For a nonequiaxed model, the operating range of 
the fast deforming system (in which the longer grain 
boundary acts as the sliding facet) is increased to 
1 0 2  - -  01] > 30 ~ although the resolved shear-stress co- 
efficient is lower when 0 is out of the 30-60 ~ range as 
shown by Fig. 3. 

In practical materials, an equiaxed microstructure is 
isotropic in its deformation behaviour; a constitutive 
equation free of the ~ term results by normalization 
of Equation 1 to account for such a circumstance. 
The same treatment should be carried out for Equa- 
tions 17-19. A schematic depiction is given at the 
upper-right corners of Fig. 6a and b, which shows the 
highest deformation rate and lowest flow stress at 
0 = 45 ~ for an elongated microstructure, while for 
equiaxed grains both ~-0 and (y-0 behaviours are 
constant. 

Further complexity is likely to be brought about by 
applying the above consideration to the examination 
of superplasticity of engineering materials. It  is well 
known that a large scatter in P and 0 exists from 
position to position [24], which makes quantitative 
metallographic determination of the microstructure 
a laborious, or almost impossible, job to do. Inciden- 
tally, since a nonequiaxed microstructure is thermo- 
dynamically unstable under the condition of super- 
plastic deformation, an equiaxiallization process, 
whose kinetics are rather poorly investigated [24, 25], 
is inevitable and must be taken into account. 

Grain boundary sliding (GBS), as a deformation 
mechanism, is expected to occur in a wider strain-rate 
range in an arbitrarily oriented nonequiaxed micro- 
structure than in a homogeneous: equiaxed one, al- 
though it should be restricted t o  certain regions in 
the material; this is a reasonable prediction of the 
present model. The transition from GBS to disloca- 
tion creep (DC) is significantly varied in different 
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Figure 5 Superplastic deformation strain-rate dependence on grain 
aspect ratio. 
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regions; consequently, deformation by GBS and DC 
tends to coexist, and a moderate strain-rate sensitivity 
index m is likely to be exhibited in the overall strain- 
rate range. A similar effect has been well discussed in 
the literature on microstructure with a grain size dis- 
tribution [26, 27]. 

Exaggerated inhomogenity caused by differently 
oriented nonequiaxed grains is surely detrimental to 
plasticity and surface quality of the deformed work- 
piece. However, this can be improved to some extent 
by accelerating the dynamic equalization and hom- 
ogenization process with optimized superplastic de- 
formation technology [28]. 

4. Conclusion 
An analysis is made of the problem of superplastic 
deformation anisotropy initiated by a directionally 
arrayed nonequiaxed microstructure. Grain boundary 
sliding (GBS) is accommodated by climbing and anni- 
hilating processes of grain boundary dislocations 
(GBDs). Dynamics of GBD activity, combined with 
deformation geometry, exhibit a profound influence of 
grain shape on stress-strain rate relationships. Consti- 
tutive equations show a negative power dependence of 
strain rate on the grain aspect ratio when tensile stress 
is applied parallel or perpendicular to the longer axis 
of grains, which means elongated microstructures re- 
duce superplastic deformation. While the applied 
stress lies in an angle around 45 ~ to the longer axis, the 
power of strain-rate dependence on grain aspect ratio 
is positive, and superplastic deformation can be accel- 
erated to some extent by a nonequiaxed microstruc- 
ture. 
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